J. FleureflT owar ds a new generalized space expansion dynamics... jan 2014 page 1/19

Towards a new generalized space expansion dynamics applied to therotation of
galaxiesand Tully Fisher law

Jacques Fleuret

33, Rue des Roses 92160 Antony (France)
jacques.fleuret@telecom-paristech.org

331660559103

Astrophysics & Space sciencéolume 350, Issue 2 (2014), Page 769-775.
Electronic version :
http://www.springerlink.com/openurl.asp?genre=&8ed=do0i:10.1007/s10509-014-

1797-y

Abstract
Up to now, the rotational velocities of galaxies aot clearly understood and the
experimental Tully Fisher rule, linking the totallgctic mass to the fourth power of the
velocity, through an acceleration coefficient 0bab10™ m/< has not found a deep
theoretical explanation. Tentative proposals (MOiREory of a modified Newton’s
law and extraneous dark matter) do not bring andefclarification. We propose here a
new approach to this problem, without exotic madied using the classical Newton
force. But we introduce a new additional univeesaeleration, which could represent
a universal expansion law valid at the scale lefa galaxy. We show that this
hypothesis leads to a good description of the eeskvariations of the galactic
transverse velocity. It can be considered as astprence of the Scale Expansion
Cosmos theory (SEC) introduced by J. Masreliezwmipostulate that the space
expansion acceleration universally applies at aajes We obtain a formal derivation
of the Tully Fisher law, linking the constant gdlad¢ransverse velocity to its total
mass, via the universal minimum acceleration. Wesde good estimate of the TF
acceleration coefficient and show that expansia@ulshbe proportional to the square
root of the local volumic mass density. Our conjeetis in fact a new dynamics
principle which could be applied to many other pbgisproblems at different scales.
Applying it to the range of the solar planet syswmanfirms the well known Kepler
laws, at least as a valid approximation for theeoxf magnitude of the solar system.
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1 Introduction

Up to now, the rotational velocities of galaxies aot clearly understood. The gathered
observations (Courteau et al., 2003; Palunas &iaffk, 2000) of velocity curves do
not fit well with gravitation laws. The experimehfally Fisher rule has been
established (McGaugh, 2011; Tonini et al., 2011;8M&ao, 2000; Verheijen, 2001)
but has not found a deep theoretical foundatiomtibduces an acceleration coefficient

v, of about 13° m/¢’ linking the total galactic mass to the fourth powethe

measured transverse velocity.

Two new principles have been attempted in respdhseassumption of a modified
Newton'’s law (MOND theory) for small acceleratigivdcGaugh, 2002; Cardone et al.,
2011) and the hypothesis of a dark halo made gfdpér or non-baryonic black matter.
Despite a large number of studies of this last bypss, the conclusions are not clear
(McGaugh, 2011; Tonini et al., 2011; Mo & Mao, 208@rheijen, 2001) and (Bottema
& Verheijen, 2001; Bottema, 2002, Feng & Gallo, @0Bienaymé, 1999).

Very few papers tend to envision other approachaglor, 1998 Mizony, 2003, Fuchs
et al., 2004; Cooperstock & Tieu, 2007).

On the other hand, the expansion of the Universelsestablished involving
expansion velocities proportional to distance adicgy to the well-known Hubble law
(Riess, 1998). Few studies have tempted to applygalactic level (Nandra et al.,
2012). In his original “Scale Expansion Cosmos’oilye J. Masreliez envisions space
and time expansion, which would imply galactic flaiation curves with spiral star
trajectories (Masreliez, 2012; Masreliez, 2004a,b).

We propose here to introduce a new additional usaleacceleration, which could
represent a universal expansion law valid at théedevel of a galaxy. We’ll show that
it can be considered as a “cosmic drag” resultiognfa SEC theory, where expansion
is not homogeneous but depends on the local stajgmoe. This additional
acceleration allows a good description of the olgrariations of the galactic

rotational curves, without exotic matter. More getig, the conjecture of a universally
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scaled expansion force will allow us to derive tietical expectations for the main
physical quantities linking expansion to galaxy alyncs.

2 Initial assumption

2.1The problem of the rotation of a planar mass dttion

The rotation of a planar mass distribution subrditteNewtonian gravity follows the
well-known equations, written in polar coordinafe® neglect the reciprocal influence
of the star on the galaxy, due to the huge diffeeesf masses):

2r0+rd=0 (1)

F—r? =-T(r) (2

WhereT, ¢ )s the central gravitation acceleration due tovthele baryonic mass

distribution in the galaxy at the time t conside(etlial symmetry is supposed) aéd
is the polar angle.

These equations explain the planar movement, thr¢ligand the resulting angular
momentumC = rv, (r) =r?4,

where the (transverse) rotational velocity is:

V, =10 (3)

The observed velocity curveg r (fgr planar galaxies show a very rapidly growing

part near the origin, usually followed by a slowlgcreasing function which remains
guasi constant for a large range of radius (Palu&ddilliams, 2000; McGaugh, 2011,
Tonini et al., 2011). But eq (1) necessarily letida transverse velocity inversely
proportional tor . Any other additional force (collisions, thermicelectromagnetic
forces, etc.) could be envisioned to contributthoprocess: this would not change that
last result unless the force had a transversetpas,changing eq. (1).

2.1 Conjecture of a universal expansion force actingabxy range level
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We examine here the consequences of an additigpahsion acceleration which
would be valid at a galaxy range scale, and follogvgiven vectoriatelationship:

r_

Vexp = -V (4)
r

When compared to the classical Newtonian acceterdtir a quasi circular orbit, we

immediately point out that it is in the ratio:

= ©)
When acceleration (4) is added, eq. (1) is rewrids:
2r9+r9=$v5 (1b)
Then from (3):

F@+rf=0 (1c)

which means that, does not depend on time.

Note that ther = 0solutions of (1b) still require a constant anguemmentum. More

generally, eq (1b) does not lead to a constantlanguomentum and seems to be in
contradiction with the well known Kepler laws fdapet motions. This point will be

clarified in section 3.9. The rest of the papdb=used on the star rotations within a
galaxy.

3 Resulting developmentsfor galaxy dynamics and expansion

3.1 Temporal radial evolution

We also rewrite the radial equation as:

F—r@?=—r (r)+r (2b)
r

And, using (3):

i —r?=v;—rr.(r) (2¢)

this equation describes the temporal evolution of r
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In this paper, we examine the possibility of a Soluwith a constant transverse
velocity, according to (1c):

v, =1rd=v, (6)

Mathematically, (6) is not a necessary conditiaut,ibis a sufficient one, describing
one possible solution of the dynamics equations.

Then we should have:
i =v, +r%—rr(r) (2d)

which can be written as:

d(ry_v% _L()
B

dt r? r

We assume here the:rt does not depend explicitly on timf%(ij =0.
r
For very large radii:

GM,
r2

r.(r)d 7)

where M, is the total mass of the galaxy. Then, eq. (2e)o=written as:

£9(1).% o .
ror\r) r* r*

Resulting in:

.\ 2 2

f v, 2GM

() =i ©

whereh? is an integration constant.
Let-us now introduce the maximum radiysof the galaxy, where it is reasonable to
suppose the two independent hypotheses:

1) expansion at =r,, is radially quasi-stationary:

a(r
{E[?j}r:w oo (10)
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Then, from (8):
vir, OGM, (11)

And for r Or,, we obtain:

(fj Oh? - Lap (12)
r 3

Where w, represents the angular velocityrgt:

W =— (13)

(Lj <<, (14)
and obtain from (12):

ho% (15)

V3
Since there is not only one galaxy in the univetise constant h should not be confused
with the Hubbel Constant H, which results from itiftuences of all galaxies with their

own particular parameter values (equivalent,of,, anday, ), from all directions of

space.
We shall derive the value of the Hubbel Constaramgther approach further down.
Finally, we obtain here quasi circular spiral tcaggies and expansion depends on

radius. It is minimal at the galaxy edge (eq. 1#J ean be practically neglected there.



J. FleurefT owar ds a new generalized space expansion dynamics... jan 2014 page 7/19

v (km/s) 500

400
300 — sqn(T ()
200 o vo
100
0 T T T T T T T T T r (kp C)

FIG.1. lllustration of the transverse velocity caiffor a Kuzmin mass density model)

3.2Transverse velocity curve
Equations (1b) and (2d) illustrate the way our psED process works.
Dark matter should produce an inward acceleration.

Our (small) outward acceleration (4) is vectoritd.transverse part stabilizes t (€q9.

1b). Furthermore, eq. (2d) will also tend to retrikaansverse velocity.
To illustrate the process of our proposal, figak been drawn as an instance for the
case of a Kuzmin surface mass density (Binney &nkiee, 1994).

. roM
Here, r (r) results from a surface mass density R

277(r 2+ )5

r 2
2

V -
rr(r) = M M

A (S e

The chosen parameters avk =3,5 10'%g, r, = 2kpc andv,, = 220km/s.

3
2

There are two values affor which eq (2e) is nullr,, 0 0,7kpc andr,, J156kpc.
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Abover,, , the expansion is accelerated (eq.2e) and itasldeated in the range

raSr<r, .

For r Or,, , we have quasi circular spirals £ 0 but small) and stable expansion.

Furthermore, we see thaf in eq. (2) has been replaced gy+” in eq. (2c). The
radial velocity term tends to regulate the radaiation of transverse velocity: along

an outward spiral trajectory,, should decrease according to Newton law, but the

decrease of *due to eq. (8) allows, to remain constant.

It must be noted that the sign bis not specified by eq. (9): the spiral trajectsrean

be inward or outward. Her&,> h@ve been chosen, to match with what occurs outside
the galaxy (outward expansion). But contraction &ain be envisioned. In this case,
instead of “decelerated expansion”, we could haceélerated contraction”. Only

experimental observations can confirm the matheralathoice.

:2
. : : f

We also emphasize the fact that — even if our esiparterm— “goes the wrong way”
r

when compared to the hypothetical dark matter erfiee — it does not produce en
explosion. For smali , i’ remains negative (eq. 2d) and smaller than the dlewt
acceleration.

In the case r = Qwe have obtained outward decelerated spiraldi@ijies.

If ¥ <0, we would have inward (slowly) accelerated coritoac

3.3Case of low radii and summary
For low radii (r <r,,), experimental observations show a very rapidbngng v, (r)

curve. In this case, the Newton acceleration caapgpeoximated as:

r’G
r(r) D’w‘;—z = 7,6 (16)
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where p, is the central (two dimensional) mass density. Asag that eq. (2c) remains
null in this range where spiral trajectories ari &lid [%[Lj =0 orr=hyr], we
r

obtain:

v, = /70T (17)

which fits observation.
To resume:
Near center, “stable” exponential expansion prodtie rapidly growing curve (17).

Beyondr,,, the transverse velocity remains constant ande{destted) expansion takes

place up tor,, ,where (small) stable expansion is observed. Caitsid galaxy,
expansion is accelerated.

The observeds, r( Qurve is nothing but thm curve up tor,, and

V,(r) =v,above.

3.4Eulerian transverse velocity

The above description concerns individual trajee®of a single star (Lagrangian
formulation).

When we consider a galaxy, the velocities of @tsprobably tend to regulate
themselves due to interaction processes: for medined stars having approximately
equal masses, this process would lead to a quasiartt (Eulerian) radial velocity.
The Eulerian point of view is given in Appendix, &k it is shown that a constant
transverse velocity remains possible, under theliton that acceleration (4) is added.
3.5Expansion acceleration versus SEC cosmic drag

In the Scale Expansion Cosmos (SEC) theory, J.&lagrshows that a “cosmic drag”

force results from space and time expansion, walsh predicts spiral star motions. In
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particulanMasreliez, 2012), he gets an additional radiakbaration term— Hr , with

constant tangential velocity, and exponential inward trajectories:

r=eMor L =-H (18)
r

In these conditions, our expansion accelerati@gigvalent to his cosmic drag:

Lt =—hr (19)
r

The Masreliez theory also predicts the same radietleration:

a —EE 24 :EE :£
2r9+r9—rdt(r ) rdt(vor) v, (20)

In this sense, acceleration (4) can be envisiosal@nsequence of SEC theory.
Nevertheless, our proposal postulates a non honeogsrexpansion, depending on the
scale level of the considered space, which leadsoi@ precise descriptions, such as
ed. (9) and other consequences developed in thiegoaeagraphs.

Furthermore, contracted spiral trajectories haenl@ssumed by J. Masreliez, but we
have shown that an expanded solution can alsobsi@med, depending on the sign of
r.

3.6 Tully Fisher law

Let us call:
V2

Vo =—= (21)
r.M

In the upper range of the galaxy[(r,, ),the expansion term can be neglected (eq. 14).

Classical Newtonian gravitation can be applied herthe quasi circular trajectories:

2
Yo gor(r,) DG'\ft (22)
rM r.M

Eliminating r,, from (21) leads to:

V¢ Oy,GM, (23)
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This expression relates the constaansverse velocity, to the total mass, vig

which is nothing else than the minimum central sreg¢ion, obtained on the outskirts
of the galaxy. Since this minimum acceleration does not depenthe considered
galaxy(McGaugh, 2011), we are then driven to postulaaé there could be a

minimum (non zero) possible acceleration in theverse Galaxies could spread up to

the radius corresponding to that minimum accelenati

In this way and under our assumptions, we obt&orraal derivation of the Tully

Fisher law. To be clear with our assumptions, isthiae emphasized that the flat curves
are explained by the additional cosmic accelerafitve TF law then results from the
hypothesis of a minimum possible acceleration ethiverse at a given time.

The experimental verifications of the Tully Fishelationship constitute an

experimental proof of the fact thgj is a universal constant, and that the ratio

Vi GM,
2

My My

does not depend on the considered galaxy.

3.7 Towards a universally scaled space expansion
The expansion coefficients obtained above are airwol the Hubble Constant, but with

other values (eq. 12, 13, 15).

Concerning our galaxy, for a measured velogjfyof about 220 km/s and

¥, =107"°m/s?, eq (23) implies a mass, =3,5 1d* kg. andr,, can be obtained from
(11) to be 16 kpc.

We obtain forw, (eq.13) the value 14 km/s/kpc or 4,6'46".

Furthermore, the following expressions can be deddiom (13), and (21):

1 . . . . — — V; 2 .
Simple gravitation would predictsy = I'(r) = — and Vv, = I (r) should be radius dependant. The case
r

GM(r)

[(r) =——— should prediciv, = JGM whereV,, M and y are radius dependant.
r
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yO = a)OVO = a)ng (24)

And from (22):

_
Wt =20 25
> =G, (25)

Eq (24) has the form of the famous Hubble expansam, but with two differences:

v, is a transverse velocity and the valuagfdepends ory, andGM, .

Space expansion coefficient depends on the « looassive content.

From (11) and introducing the volumic mass dengitywe obtain:

= |4
@y =15 T6H (26)

Expansion is proportional to the square root ofvblemic mass density

Inversely, expansion will decrease whenever thesimagontent vanishes.

3.8 The universal constarny, and the scaling of the expansion law

The angular momentum can also be considered. k&moan is (from (21) and (23):

1

-= 3
C=vory =y04(GMt)Z (27)
Let us try to transpose this result to the wholeense. We would obtain the following

cosmological result, for a (2D) universe of radius

(Gm)*
Yo

¢‘R* = (28)

whereM is the total mass of the universe anthe velocity of light.

Allowing it to be 3 D, this can give an estimatiointhe universal constany,, as a

function of the mean massic (volumic) densityof the universe. Usingr = % , we

obtain:

(4 s c
Yo = 5776/»10 e (29)
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2
For the critical mass density, = 3t
87G

we finally obtain:

Hc
=— 30
Yo 3 (30)

This expression is intuitively significant to meaismall acceleration in the universe;
and its numerical value is correct (0,86'1én/s’ for H=2,310'® s). It can also be

considered as a derivation of the Hubble constaluey

H =g (30b)

which is numerically well verified for our galaxy.

These results validate our theory. Then Tully Fisae (23) is better written as:
8vy OHCGM, (23b)

Furthermore, comparing (24) with (30) results ie fitaling relationship:
— =8— (31)

Expansion seems to be inversely proportional tocrsl.

3.9 About Kepler laws for planet kinetics

The well-verified Kepler laws do not obey eq (1hlice they require a constant angular
momentum and not a constant transverse velocity.

However, let us compute the variations of the aagoiomentum C. We obtain:

d—C:vor' and£=L (32)
dt Cdt r

We apply to the solar system the same model agsritbeleveloped for the galaxy, but
consider that the planets are in free space, faydwm the heart of the condensed

matter (which is the sun). Then, in analogy withgfd (15), we obtain:

Toho% (9b)

r V3
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which represents the expansion coefficient forsthiar system. It is reasonable to think
that its value is similar to the one for the galashen, from (32) and (9b), the order of

magnitude of the angular momentum variation per igea

-16

c 5 > 107 0108 (33)

Where 8 represents here the earth angular velocity.
A waiting time of 10 years is needed to obtain a significant changagular
momentum. For the planet dynamics in the solaesysthe expansion acceleration is

extremely weak when compared to the Newtonian sinege they are in the ratio (5):

This is why Kepler equations (1 and 2) remain védidplanetary motions, at least as
an approximation for the orders of magnitude of salar system.

[For the galaxy, the angular velocity is’tnes much slower and the angular
momentum variation (32) cannot be neglected anyemor

As a summary, elliptic orbits occur in planetargteyns where expansion is weak (eq 1
and 2). But at the galaxy level, eq. 1b and 2bnaBpiral star orbits with a quasi
constant transverse velocity.

Nevertheless, it must be pointed out in the corméxiur theory that the planetary
orbits remain to be more precisely ruled by eq) éiid (2b), making them a good
candidate to elucidate the problem of observedepldrifts.

4 Conclusion and comments

We have shown that the transverse velocity of plaress distributions can be

modelized by the use of purely Newtonian dynamicsler the new hypothesis of a

2 Eq. (26) could be extrapolated, estimating theesponding “local” volumic mass densities for the
solar system (Mover a sphere of 4 light-years radius) and forgdl@xy (Mt over a sphere of 15 kpc
radius) which gives the same order of magnitude.
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universal space expansion acceleration proportimnatlocity. Then, the Tully Fisher
law has been derived, assuming a minimum univexsaleration in the universe.
Tentative explanation of the fact that the velo@tyot constant but is often slowly
decreasing witlr could refer to other energy exchange processel,aicollisions
which can be envisioned to take off energy whenewasses are not too close together,
I.e. in the large radius range.

Our study tends to argue that extraneous hypotl{s@8ID theory or non baryonic

dark matter) are not necessaay least for this particular problem of galaxyoegies.

Our conjecture of a universally scaled expansiooef(eq. 4) has been introduced,

resulting in a correct estimation @f (eq.30) and linking expansion to the local mass

content (eq 26). This conjecture introduces a temtdypothetical new fundamental
dynamics principle, stating that the natural “freeSvement would a priori be
exponentially time-scheduled, thus asserting therMeez idea of time expansion.
Applying it to the planet kinetics, we have showattKepler laws remain valid, at least
as a convenient approximation for the orders ofmade of the solar system.

It will be necessary to confront our conjecturehwakperiments and further theoretical
developments.

Experimental observations of planetary drifts cduda first idea. More precise

observations of the galactic variations/pfr t(angi’(r,t) would be also very

interesting. Unfortunately, measurements are ney,edue in particular to the very low
acceleration values. But indirect identificatiomsulel be fruitful: for instance, the
expansion coefficient could be deduced from (2&),rhass repartition parameters can
be deduced from close observations of such cuweb@wn fig.1, etc. More simply,
close observation of plain “linear” movement ofed’ spacecrafts (Masreliez005;
Minguzzi, 2006; Nottale, 2003) could be of partauiterest to verify such

accelerations as stated by (4) or (30).
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Further theoretical developments will also be ulsefuefine the mass density model
and study the evolution with time, add a modebah@nge processes between stars,
generalize our formulation to 3D space, apply aoppsal to other problems at various
scales, extend the proposal to relativity and artipular, link it with Nottale’s ideas on

scale relativity.

Appendix: verification of the Euler equation
For a velocityv, ( t Yangular symmetry is assumed) we have:

dv, adv, . ov,

dt  or ot

=0

or (forr £0):

ov
Ny __ )

or f
The radial dependance of the velocity is the ratiis time evolution over the
expansion rate. Postulating that the former is maaler that the latter leads to the
result that the transverse
velocity remains quasi constant with

More generally, we can verify the Euler equation:

dv _ ov 1 r) r -
— =—+rotvOV+=gradv® =| =T, (1) +— |i +-v
dt ot 29 ( (1) er o]

wherei and j are the radial and transverse unitary vectors.
We postulate a constant transverse velocly: v, :
V=r(r, i +v,)

We have:



J. FleureflT owards a new generalized space expansion dynamics... jan 2014 page 17/19

ot ot

and:

— =(F -V, 0)i +rg

rotv =1(irv0 —ﬂjﬁ =Yg
r\or 04 r

since— =0

[k=707]

and

1 or -

—gradv® =rgrad(r) =r —i

59 grad(r) o

Then the Euler equation is (for the only two gratidn and expansion forces):

av v 1 2. r -
— =—+rotvOV+=gradv® =| -T.(r)+— |i +—v
dt ot 29 ( (1) rzj p ol

Assumingﬂ = 0 (axisymmetry), we obtain, along vectdrand j respectively, the

following equalities:

. 2 . . 2
f"—VOQ:ﬂ—V—O+r’a—r:—rt(r)+r— (Al)
or r
ro= Vol _ LVo (A2)
rr
Knowing thati’ = o +r % andr@ =v,, these equations are verified and eq.(A1) is
r

equivalent to (2d). We have thus proved that atemsransverse velocity is possible,

under the condition that acceleration (4) is added.
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